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Abstract. The carotid bifurcation has been a region of particular interest due to its predilection for clinically significant
atherosclerosis. It has been shown that the vessel geometry is a major determinant of the local haemodynamic properties
which are believed to be associated with the location of atherosclerotic lesions. Current knowledge of the geometry of the
carotid bifurcation is insufficient and restricted to basic geometric parameters. To provide some means of quantifying the de-
gree of complexity of the 3D shape of the bifurcation, we made an initial attempt by evaluating the non-planarity of an arterial
bifurcation based upon the singular value decomposition theorem.

In this paper we present our results obtained on the right carotid bifurcations of six normal subjects, each of whom was
scanned twice using the 2D time-of-flight MR sequence. The acquired 2D cross sectional images were processed by using
our in-house software which comprises 2D segmentation, 3D reconstruction and smoothing. The centroids of each transverse
slices were determined and used as input data for the non-planarity analysis. Our results using the singular value decompo-
sition method have demonstrated discernible differences in non-planarity among individuals. Comparisons with the planarity
definition proposed by other investigators suggest that the singular value decomposition method offers more information about
the linearity and planarity of the bifurcation. However, it is also realised that a single measure of non-planarity can never fully
characterise a bifurcation owing to the great variety of geometries.
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1. Introduction

It is now generally accepted that the genesis and distribution of arterial disease is influenced by lo-
cal haemodynamic factors. Support for this derives from studies of the focal distribution of disease
in humans [2,5,8], correlations between the distribution of early lesions in experimental animals and
haemodynamic measurements in casts of the experimental vessels [9]. More recently,in vitro studies on
endothelial cultures have shown that virtually every function of the cells is altered by the degree of fluid
movement in the culture medium [1,8].

There is also a growing belief that subtle variations in the anatomical shape of arteries can have signifi-
cant influence on local haemodynamics. Our current knowledge of the geometry of an arterial bifurcation
is insufficient and restricted to basic geometric parameters, such as the diameters of its main branches
and the angles between them. To advance the discussion beyond the anecdotal and to provide a basis for
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testing this hypothesis, we believe that it will be necessary to develop some means of quantifying the
degree of complexity of the the shape of an artery. Realising the fact that the three main vessels at an
arterial bifurcation are unlikely to lie in the same plane, and the potential importance of non-planarity
as a geometric variable influencing the local flow patterns, we made an initial attempt by evaluating the
non-planarity of an arterial bifurcation based upon the singular value decomposition theorem.

In this paper we will present the outline of the method and apply it to the analysis of carotid bifurca-
tions of a number of subjects measured using magnetic resonance imaging (MRI). For the cases shown,
we analyse the skeleton of the bifurcation determined by 3D image analysis techniques from sequen-
tial transverse images of the bifurcation. The method, however, is not reliant upon this skeletonisation
and would work equally well on, for example, a description of the bifurcation as either a structured or
unstructured cloud of ‘wall’ points [1].

2. Theory

The singular value decomposition theorem states that any (n × m) matrix X can be written in the
‘nearly’ unique form [6]

X = UWVT,

where:

U is an (n × m) matrix,
V is an (m × m) basis matrix,
U andV are orthonormal withUTU = VTV = I,
W is an (m × m) diagonal matrix with non-negative elements withW11 � W22 � W33 . . . (the
singular values). For our data,m = 3 andn is the number of points describing the vessels.

Practically, the first row of the basis matrixV is a unit vector defining the line of best fit to the dataX
in the least-squares sense, the first column ofU is the projection ofX onto this line and the first singular
valueW11 is a measure of the ‘amount’ of the data that can be ‘explained’ by this single line.

Similarly, the first two rows ofV define the plane of best fit to the data, the first two columns ofU are
the projection ofX onto this plane andW22 is a measure of the amount of the data that is explained by
going from a 1D to a 2D representation of the data.

In this paper, we consider a set ofn points describing a 3D object, the carotid bifurcation; either points
lying in the vessel walls or points describing the skeleton of the vessels. (X) is an (n × 3) matrix where
each row is the vector describing the position of an individual point in an arbitrary frame of reference.
In this case,U is a complete description of the data in the coordinates given byV andW33 is a measure
of the amount of the data which is explained by going from the 2D to a 3D representation of the data.
If X is dimensional, thenW is dimensional and cannot be used directly as a frame-indifferent measure
of geometry. However, the trace of the the matrix,Tr(W) =

∑
i Wii, is a measure ofX. We therefore

propose the scaled singular valuesSn = Wnn/Tr(W) as measures of non-planarity of the dataX.
S1 indicates the fraction of the data that can be ‘represented’ on a single line.S1 andS2 together

indicate the fraction of the data that can be represented on a plane. Since, by definition,
∑

i Si = 1, S3

is a measure of the fraction of the data that is non-planar. We note that sinceW11 � W22 � W33,
0 � S3 � 1/3.
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The meaning of the scaled singular values can, perhaps, be best illustrated by indicating the results
that would be obtained for a variety of idealised geometries. For a homogenous set of points describing
a sphere, there is no preferred direction and we would obtainS1 = S2 = S3 = 1/3. For a circular
cylinder whose length is larger than its radius, we would obtainS1 > S2 = S3 where the magnitude
of the inequality would be determined by the aspect ratio of the cylinder. For a segment of a torus, we
would obtainS1 > S2 > S3 where the magnitude of the second inequality would indicate the degree
of curvature of the segment in the plane of the torus to its radius. For a circular cylinder following a
helical path, we would again obtainS1 > S2 = S3 where the magnitude ofS2 andS3 would reflect both
the radius of the cylinder and the radius of the helix. If the set of points lie in a 3D surface, as in all of
the previous examples, thens3 �= 0. If we consider a linear representation of a 3D object, such as the
skeleton used in the examples below, then it is possible forS3 = 0. Thus, for the skeleton of a straight,
circular cylinder we would obtainS1 = 1,S2 = S3 = 0; for the skeleton of a segment of a torus,S3 = 0;
but for the skeleton of a helical circular cylinder,S3 �= 0 because the skeleton would no longer lie within
a plane.

We also note that the singular value decompostion of the data provides an easy means of displaying
the best fit coordinates and its projection onto the best fit plane.

3. Methods

The anatomical data used to test the algorithm was derived from young, healthy, male subjects as part
of a reproducibility study in which each subject was scanned on two separate occasions. The methods
of imaging and image processing used to produce the images of the lumen of the carotid bifurcation and
their skeletons has previously been described in detail [4]. Briefly, an axis roughly parallel to the right
common carotid artery was determined, thez-axis, and a 2D time-of-flight MR sequence was used to
obtain cross sectional images transverse to this axis. A total of 60 slices, 1.5 mm apart were obtained.
The 2D cross sectional images were segmented by using an active contour method, and the centroids of
all cross sections were determined. After 3D geometry reconstruction and smoothing, new centroids at
equally spaced cross sections were determined. The data were interpolated to give points 0.1 mm apart
along thez-axis, 500 points for the common carotid and 400 points each for the internal and external
carotid arteries.

4. Results

The results of the application of the singular value decomposition algorithm to a carotid bifurcation are
shown in Fig. 1. Figure 1(a) shows the surface rendered vessels determined from the MRI scans, 1(b) or-
thogonal views of the skeleton of the bifurcation in and normal to the best-fit plane, and 1(c) a scaled 3D
view of the skeleton and its projection onto the best-fit plane where the scaling factors for each axis are
the corresponding singular values.

Figure 2 shows the three scaled singular values,S1, S2 andS3 determined for six subjects. Note that
for all of the subjects,S1 is approximately 80% andS2 10–15%. Thus, the non-planarity for all of the
bifurcations is relatively small but still potentially important.

The proposed measure of non-planarity,S3, is shown again in Fig. 3 (upward triangles) which also
includes the values calculated from the second scan of each subject in this reproducibility study (down-
ward triangles). We see that the reproducibility of the scans and subsequent analysis is reasonable good
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Fig. 1. The right carotid arterial bifurcation of one the six subjects studied. (a) The surface rendered vessels determined from
MR scans. (b) Orthogonal views of the skeleton of the bifurcation in (top) and normal to (bottom) the best-fit plane where the
axes are in units of the distance between sample points (0.1 mm). (c) A 3D representation of the skeleton and its projection
onto the best-fit plane where the axes are scaled by their corresponding singular values. The best-fit plane is determined from
the singular value decomposition (the rows ofV) and the values in thex3 direction represents the deviation of the skeleton from
the planar.

(<1%). We also see that there is a measurable difference betweenS3 for different subjects, although
subjects 3–6 display very similar values.

It is obvious that the results of the analysis will depend upon the length of the vessels included in the
analysis. In this study we have included 5 cm of the common carotid artery and 4 cm of the internal and
external carotid arteries. This choice is somewhat arbitrary and dependent upon the properties and reso-
lution of the MR scanner. It was also influenced by another part of the study which was the comparison
of MR and 3D ultrasound scans which forced us to take into account the accessibility of the carotid ar-
teries to ultrasound scanning. As a test of the influence of this factor in the calculation ofS3, we repeated
the analysis for a variable number of points for one of the bifurcations. Figure 4 shows the three scaled
singular values as a function of the number of points, outward from the point of bifurcation, included in
the analysis. For the interpolated data used in this study, each point represents 0.1 mm.
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Fig. 2. The scaled singular values,S1, S2 andS3 for the skeletons of the carotid bifurcation for the 6 subjects.S1 indicates
the percentage of the data that can be represented on a best-fit line,S1 andS2 indicate the percentage of the data that can be
represented on a best-fit plane andS3 indicates the percentage of the data that is non-planar.

Fig. 3. In order to check the reproducibility of the anatomical measurements, all 6 subject were scanned twice. This plot
showsS3 for both scans with the upward triangle corresponding to the scan shown in Figs 1 and 2.

Finally, from our experience in applying this algorithm to anatomical data, we realise that a single
measure of non-planarity can never fully characterise a bifurcation as the variety of geometries is too
great. However, we have found the singular value decomposition of the data to be easy to apply and
very informative. The identification of the best-fit plane for the bifurcation provides a very convenient
frame of reference for comparing bifurcations. It also provides a means for more sophisticated analysis
of the geometry of a bifurcation such as moments of distances away from the best-fit plane which may
be necessary for a more complete description of a bifurcation.
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Fig. 4. The scaled singular values,S1, S2 andS3 for one bifurcation as a function of the number of points per artery included
in the analysis. Each point corresponds to 0.1 mm.
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