
Functional Programming through Deep Time:
Modeling the first complex ecosystems on Earth

Experience Report

Emily G. Mitchell
University of Cambridge & British Antarctic Survey, Cambridge, UK

ek338@cam.ac.uk

Abstract
The ecology of Earth’s first large organisms is an unsolved prob-
lem in palaeontology. This experience report discusses the deter-
mination of which ecosystems could have been feasible, by con-
sidering the biological feedbacks within them. Haskell was used
to model the ecosystems for these first large organisms – the Edi-
acara biota. For verification of the results, the statistical language R
was used. Neither Haskell nor R would have been sufficient for this
work – Haskell’s libraries for statistics are weak, while R lacks the
structure for expressing algorithms in a maintainable manner. This
work is the first to quantify all feedback loops in an ecosystem, and
has generated considerable interest from both the ecological and
palaeontological communities.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms Languages, Experimentation

Keywords Haskell, R, Palaeontology, Ecology

1. Introduction
Complex life on Earth evolved 600 million years ago, after billions
of years of simple microbial life. The first complex organisms were
the Ediacara biota, which lasted only 30 million years – a blink
of a geological eye. The Ediacara biota were shortly followed by
the Cambrian Explosion, bringing with it the precursors to modern
life, which have dominated the Earth ever since. Understanding
why these Ediacara biota failed can give clues to how ecosystems
function. These unsuccessful organisms are unlike anything else, so
many traditional techniques from biology and palaeontology do not
apply. Computer modelling can give us new insights by allowing us
to test theories, including some that have been debated for over 40
years.

Rangeomorphs are a group of Ediacaran species, with a fractal
branching structure, which maximizes surface area – see Figure 1.
Organisms that maximize their surface area normally feed in one
of three ways:

1. Photosynthetic - converting sunlight to energy [8].
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2. Suspension feeding - filtering plankton from the water column
[6].

3. Osmotrophic - absorbing organic carbon directly through their
membrane walls [7].

We now know that most rangeomorphs lived in the deep ocean,
so can’t have been photosynthetic [15], but the debate rages on be-
tween the other two strategies. Using Haskell, I modelled potential
Ediacaran ecosystem as graphs, with species as nodes and feeding
relationships as edges [10]. From these graphs the feeding strate-
gies corresponding to feasible ecosystems were determined. Most
rangeomorphs were found to be osmotrophic.

How fossils are spatially distributed in the rock gives clues to
their interactions in life. These distributions were used to validate
my models by comparing feasible ecosystems to those suggested
by the actual fossils. To extract a graph from spatial positions I
used two approaches. Firstly, the programming language R [11]
was used to compare the actual locations of fossils against a ran-
dom layout (generated using Poisson processes). Monte Carlo sim-
ulation was used to quantify the significance of any variation. Sec-
ondly, Bayesian network inference was used on the spatial data to
search for the most probable graph. To perform Bayesian network
inference, a Haskell script was used which invokes Banjo, a pro-
gram written in Java [13].

This experience report first discusses the use of computer pro-
grams in ecology and palaeontology in §2. The work is described
in §3, then, since R is both the most commonly used language in
ecology and the language this project was started in, R is compared
to Haskell in §4. §5 describes how this work has been received by
the wider ecological and palaeontological communities, and gives
advice to colleagues choosing a programming language.

Figure 1. Fractofusus misrai, a type of Rangeomorph. A is a photo
of the original fossil, B shows the primary branches and C shows
the primary and secondary branches. The scale bar is 1cm. Taken
from [2]
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2. Language use in Ecology and Palaeontology
Ecology and palaeontology are both diverse subjects, ranging from
qualitative descriptive work to theoretical work. Computer literacy
varies greatly in both fields, from people who don’t use computers
even for word processing, to former computer scientists. Out of the
two groups, ecologists tend to be more computer literate.

2.1 Ecologists
Computational and theoretical ecologists have the highest knowl-
edge of computer science. These two areas require complex algo-
rithms, and languages such as C/C++, Fortran and Perl are used.
Ecology often requires statistical analysis, so most ecologists have
experience using either a specialized GUI, or a programming lan-
guage, typically R [11]. There are a number of reasons why R is
preferred for statistics:

• There are many workshops and courses in R, from basic intro-
ductions to applying the latest statistical methods.

• Books on statistical ecology often give examples in R, and have
R scripts available for download [5].

• Statisticians and computational ecologists often develop new
techniques in R, resulting in a large number of specialist pack-
ages.

• Papers often reference R packages, documenting their applica-
tions and limitations.

2.2 Palaeontology
Palaeontology is often qualitative, so it is unusual for palaeontol-
ogists to have experience with programming languages, or even
command line driven programs. Both quantitative and computa-
tional palaeontology are dominated by GUIs specifically written
for palaeontologists [3] (apart from the small field of macroevo-
lutionary modelling – which is dominated by C++). Additionally,
Microsoft Excel is used for plots and regressions. As palaeontol-
ogy starts to become more quantitative, there is a small but growing
trend towards using R, with palaeontological R courses starting to
be taught at masters level and above.

2.3 Choosing Haskell
Prior to entering the field of palaeontology, most of my previous re-
search was in analytical mathematical physics. My main program-
ming experience was in R, and I had also used some Matlab and
C++. For my work in palaeontology, I initially used R.

I started considering alternative languages when I had trouble
expressing more complex algorithms in R. I was aware of Haskell
as my husband both works as a functional programmer and is
active in the Haskell community. One motivation for choosing
Haskell was to take advantage of his expertise. However, I found
our programming styles surprisingly incompatible, and in practice
programmed almost entirely independently.

My husband puts great emphasis on code that is “beauti-
ful” – that is, economical, reusable, modular. This focus seems
widespread in the Haskell community. In contrast, I am happy with
code that works – once I have written a function, I rarely revisit it.
I suspect that my style is widespread in scientific programming.

My primary resource when learning Haskell was Hutton [4],
which I found to be clear, and had many suitable exercises. I read a
variety of online Haskell tutorials (including Learn You a Haskell
for Great Good), but did not find these particularly helpful – none
had exercises which gradually increased in difficulty.

I wrote my Haskell code in TextPad on Windows XP, experi-
mented on it using GHCi and compiled it using GHC [14]. I made
light use of the built in GHC profiler. Once I had reached a ba-

sic level in my understanding of types, Hoogle [9] was useful for
finding functions.

3. Haskell for Computational Palaeoecology
My work involves using biological interactions to understand the
development of ancient ecosystems [1]. An ecosystem can be mod-
elled as a graph, where species are represented as nodes, and inter-
actions as edges. Feedback mechanisms are one way of analysing
the structure of ecosystems, and these are represented by loops in
the graph [10]. I first considered the relationship between feedback
loops and stability for modern ecosystems, then applied the insights
gained to Ediacaran ecosystems.

3.1 Technique Development
Properties of feedback loops have been shown to indicate ecosys-
tem stability [10]. Previous work focused on “biologically interest-
ing” feedback mechanisms, which account for less than 1% of the
total number of loops. The natural extension to this work is to con-
sider every type of loop. There is a R package which qualitatively
finds all the loops in a graph (LoopAnalyst), however this pack-
age would have required significant adapting to be useful for my
analysis. Therefore, I implemented a program in R that was able to
quantitatively analyse all loops, and output the most significant.

Analysis of all loops revealed an unexpected result regarding
ecosystem stability. To confirm this finding, variations on how the
loops were computed and analysed needed to be explored. This ex-
ploration was problematic in R for two reasons, the program didn’t
run fast enough, and program modification was fiddly. Improve-
ment of the algorithm in R would have made it more intricate, and
thus even harder to modify. Writing a second version of the pro-
gram in Haskell solved both these problems. A more advanced al-
gorithm was used, but thanks to static typing and algebraic data
types, modification was straightforward – the compiler did lots of
the hard work. With a significantly improved algorithm, and with
the advanced compilation techniques of GHC, the program ran over
10,000 times faster.

Using the Haskell program, possible relationships between
loops and stability were investigated, which allowed confirmation
of my initial results. Given my programming level, I would not
have been able to get the same results using R, Matlab or C++.
For this work, Haskell provided an easily modifiable language that
ran quickly – I can’t think of any improvements to Haskell which
would have made it more suitable.

3.2 Application to Palaeontology
The Haskell program was used to investigate the plausibility of dif-
ferent feeding strategies of Ediacaran species. For each permuta-
tion of feeding strategy, an ecosystem graph was created, all loops
found, and stability calculated. Using these stabilities, I showed that
most of the early Ediacaran species must have been osmotrophic.

During this modelling work, the Haskell program was run hun-
dreds of thousands of times, which would not have been feasible
with the R program. For this type of work, seconds quickly add up,
so a faster program is always better – but the Haskell program was
fast enough. Finding Haskell packages to produce the right type of
plot was hard, so the data was saved and viewed in R.

It is important to verify any conclusions drawn from modelling
using statistical analysis of real data. I collected data from fossil
sites in order to be able to statistically analyse the distributions of
fossils on the rock face, allowing a network of fossil interactions
to be built up. The book I used to learn the appropriate statistical
techniques included examples in R, making it easy to use R for my
analysis. I looked at the statistical packages available for Haskell,
but the techniques I required were not supported (see §4.4). Switch-
ing back to R was the obvious choice.
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4. Comparing Haskell and R
My work has used both Haskell and R, so this section is a compari-
son between them. R is a language designed for “statistical comput-
ing and graphics” [11]. R defers evaluation of function arguments,
but is otherwise a strict language, R is impure and has no static
typing; it has some functional aspects, but is typically used in an
imperative manner. In contrast, Haskell is a lazy, pure, statically-
typed functional language.

Writing simple programs in R is easy, but writing more complex
programs can get messy. In contrast, writing simple programs in
Haskell requires a greater understanding of the language (such as
monads, types, etc.), but producing complicated programs is not
much harder.

4.1 Syntax and Reasoning
I prefer the Haskell syntax because it is consistent, and has an obvi-
ous correspondence with mathematical concepts. This correspon-
dence means that colleagues with no Haskell or functional pro-
gramming experience can clearly understand my calculations. In
comparison, the syntax for R is more verbose, and less consistent,
but some statistical functions are written in a intuitive way – for ex-
ample regressions are written lm(z ∼ x+y). Unfortunately, these
syntactic shortcuts can be confusing in themselves, for example
polynomial regressions are then written lm(z ∼ I(x3) + y). The
consistent syntax of Haskell means that when returning to Haskell
after a break, getting back up to speed is quicker compared to re-
turning to R.

Haskell’s purity allows extensive use of equational reasoning –
for example the code if a then b else b is equivalent to b
(providing a terminates). In contrast, the equivalent R transforma-
tion is only true if a both terminates and does not produce side
effects, which can be subtle, such as coercion changing a variable’s
underlying type. I have made such mistakes in R, which means it is
harder to refactor my R code, and thus my Haskell code is cleaner.
Similarly, when debugging Haskell I am able to deduce properties
about my code using only local knowledge, whereas R requires a
much more advanced understanding of both the program and the
language.

The downside of purity is the requirement to use monadic IO. I
found the descriptions of IO in tutorials obtuse, but found the reality
to be significantly simpler. The only awkwardness is that switching
between pure and monadic code feels like changing mode, the
syntax is different and so are many of the functions (e.g. map vs.
mapM).

4.2 Types
The static type system of Haskell is difficult to adjust to at first, but
worth the struggle – the reduction in debugging time is significant.
R has no static types, and makes significant use of coercions. If you
try and use a string as a matrix, the string will be parsed as a matrix,
which is particularly useful when reading data tables from a file. If
you try and use a vector as a matrix, a matrix will be created by
repeating the vector.

These coercions make debugging hard, and significantly re-
duce the confidence in numerical results. Many bugs that result in
compile time type errors in Haskell, result in wrong (but plausi-
ble) results in R. Additionally, coercions can be handled somewhat
inconsistently, e.g. a matrix produced by converting a list using
as.matrix will cause a runtime type error when used with some
matrix functions.

Static types are particularly helpful for beginners to find basic
library functions, using Hoogle. For example, the type of the func-
tion to remove duplicates from a list is obvious (Eq a => [a] ->
[a]), but it’s name in Haskell is obscure (nub).

Sadly, Haskell packages do not always use consistent types –
for example there are many different vectors/arrays, which makes
using multiple packages painful. Some R packages also have dif-
ferent types, but these problems are entirely masked by coercions,
meaning lots of R packages can be used together with ease.

4.3 Complex Code
Much of my work involves calling library functions, combining the
results, and doing calculations which are mathematically taxing,
but can be expressed fairly directly in any language. However, some
of my work does require more careful thought about algorithms and
more intricate structural manipulations. I find it significantly easier
to write this complex code in Haskell, for three reasons:

Static types have an enormous impact on reliability, but for more
complex code, they also provide a clear pattern for combining
functions. Static types allow chunks of code to be combined
like a jigsaw puzzle.

Algebraic data types allow me to accurately encode my data
structures, and combined with the static type checking, make
managing complexity much easier.

Higher-order functions allow detangling complex code, splitting
out specific details from an algorithm. Both Haskell and R allow
higher-order functions, but the lack of static type checking in R
makes them much harder to use. In Haskell, using higher-order
functions with algebraic data types, I was able to parameterize
operations by the details I needed to tweak, making modifica-
tions straightforward.

4.4 Libraries
For the libraries I require, R has far better coverage than Haskell.
The default installation of R has all the tools necessary for pre-
university maths or statistics. In comparison, the standard Haskell
installation (the Haskell Platform) includes advanced multithread-
ing, but lacks a function to compute the mean. From the base instal-
lation, R can install new packages through the GUI, while Haskell
requires the use of a command line tool, and far more background
computer knowledge.

R has a huge range of specialist statistics packages available,
including many cutting edge statistical techniques. In compari-
son, Haskell has nine statistics libraries, which have a reasonable
amount of overlap, but skip things as basic as t-tests. One of the
most important aspects of performing statistical tests is checking all
the necessary assumptions are valid, something often overlooked in
biological sciences [12]. Haskell packages provide normal distribu-
tion functions, but lack the Shapiro-Wilks Test which checks data
for normality – a key assumption in most parametric tests.

R has a built in plotting environment, which easily produces
a wide range of plots. Complex plots are provided in libraries,
and most statistical packages integrate plotting functionality. In
comparison, Haskell has a choice of many plotting libraries, all
of which are significantly different, and none of which have the
integration of R. In R a plot is only a simple function call away,
and they are used continuously. In Haskell, a plot is significantly
harder – I just export my data to R and plot it there.

As an example of the library issues discussed, the following R
code plots the eigenvalues of a matrix read from disk:

plot(eigen(read.delim("matrix.txt"))$ values)

In Haskell finding eigenvalues involves installing hmatrix (which
on Windows requires changing environment variables and setting
Dll paths), reading a matrix requires parsing code, and plotting is
never as simple as just calling plot. Performing this operation from
a base install of R takes seconds, in Haskell it takes far more effort.
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5. Evaluation
This section discusses how my work was received by the ecolog-
ical and palaeontological communities, along with plans for my
program and future use of Haskell. I conclude with advice on using
Haskell for computational palaeoecology.

5.1 Reception
Ecologists are excited about my work. The work done by Neutel
et al. [10] provoked much interest in loop analysis of ecological
graphs, and because my program is quick and easy to use, people
can now explore the importance of loops in much larger real and
theoretical ecosystems.

My code is available on Hackage as loopy1, but for my col-
leagues I provide a precompiled executable with an R wrapper
script, which suits them well.

Palaeontologists are interested in my results, but not in my
methods. Modelling ancient ecosystems as graphs is a new tech-
nique, and has yet to become mainstream. If I wanted palaeon-
tologists to use my program, a GUI would probably be necessary,
something I currently have no plans for.

5.2 Future Development
For huge graphs, it is infeasible to enumerate all loops (the number
of loops can grow exponentially). I plan to explore approximations
to allow larger graphs to be processed, which permit ecosystems
to be modelled in finer detail. For this work, I will continue using
Haskell, with R for any plotting or statistical analysis.

Haskell is my programming language of choice, and if it had
adequate statistics libraries, I would rarely use anything else. If I
ever need to run intensive statistical analysis on lots of large data
sets, it would be worth writing the necessary libraries in Haskell.

Another language I am considering is F#. When I started this
project, F# was a relatively new language, but now I think it could
suit me quite well. F# provides access to the .NET libraries, which
would provide much of the functionality missing in Haskell, while
still keeping the benefits of functional programming and static
typing.

5.3 Expansion of Haskell use in Ecology/Palaeoecology
Ecologists tend to use programming languages they have been
taught at university, or languages already established in their re-
search group. Once a language becomes dominant, it takes a long
time to become unseated – Fortran is still being taught. Theoretical
ecologists could find Haskell useful, because it’s quicker to write
complex code. However, the lack of simple integrated plots would
be a severe obstacle. For statistical use, Haskell is unlikely to com-
pete with R, which is deeply embedded in the community.

Computational palaeoecology is a new field – I am only aware
of two other practitioners. Haskell is well suited for this domain,
and if it became established, it would be unlikely for another lan-
guage to take over. Whether it becomes established probably has
more to do with the future career paths of existing computational
palaeoecologists than with the language itself.

It would be difficult for Haskell to become the de facto language
for scientific computing, due to its steep learning curve. Most un-
dergraduate science degrees do not teach a separate programming
course, instead teaching programming alongside a technique, such
as statistics. Programming skills are gently built up in little steps,
over several courses. Haskell could not be taught in this way, since
static types and monads would need to be taught before getting to
any technique, and this would probably be too much for one course.

Numerate disciplines like physics do have separate program-
ming courses, where the choice of language depends on its use-

1 http://hackage.haskell.org/package/loopy

fulness post degree. If Haskell, or another functional language, be-
came widely used commercially, universities would probably start
to teach it outside the computer science department. These nu-
merate disciplines could then write appropriate scientific libraries
which could be used by less numerate sciences.

5.4 Conclusions
When colleagues ask which language they should use, I only rec-
ommend Haskell if they are an experienced programmer, and deal
mostly with theoretical work. For everyone else, I recommend R.
While I think Haskell is a superior language, it has a much steeper
learning curve, and unless I was willing to teach them, R is a sim-
pler choice. Within my department there is an R learning group,
and various university run courses, which give useful support.

Haskell enabled me to get detailed results that I could not
otherwise have found. I find functional programming and static
typing powerful concepts, and other than R, would not consider
using languages lacking these features.
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